268 research outputs found

    Application of the ESMACS Binding Free Energy Protocol to a Multi‐Binding Site Lactate Dehydogenase A Ligand Dataset

    Get PDF
    Over the past two decades, the use of fragment‐based lead generation has become a common, mature approach to identify tractable starting points in chemical space for the drug discovery process. This approach naturally involves the study of the binding properties of highly heterogeneous ligands. Such datasets challenge computational techniques to provide comparable binding free energy estimates from different binding modes. The performance of a range of statistically robust ensemble‐based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent), is evaluated. Ligands designed to target two binding pockets in the lactate dehydogenase, a target protein, which vary in size, charge, and binding mode, are studied. When compared to experimental results, excellent statistical rankings are obtained across this highly diverse set of ligands. In addition, three approaches to account for entropic contributions are investigated: 1) normal mode analysis, 2) weighted solvent accessible surface area (WSAS), and 3) variational entropy. Normal mode analysis and WSAS correlate strongly with each other—although the latter is computationally far cheaper—but do not improve rankings. Variational entropy corrects exaggerated discrimination of ligands bound in different pockets but creates three outliers which reduce the quality of the overall ranking

    Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets.

    Get PDF
    Background While a large body of work exists on comparing and benchmarking descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM, a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets, namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of HIV enzyme mutants. Results The amino acid descriptor sets compared here show similar performance ( 0.3 log units RMSE difference and >0.7 difference in MCC). Combining different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last. Conclusions While amino acid descriptor sets capture different aspects of amino acids their ability to be used for bioactivity modeling is still – on average – surprisingly similar. Still, combining sets describing complementary information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01 better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared thereby underlining that choosing an appropriate descriptor set is of fundamental for bioactivity modeling, both from the ligand- as well as the protein side

    Large scale relative protein ligand binding affinities using non-equilibrium alchemy.

    No full text
    Ligand binding affinity calculations based on molecular dynamics (MD) simulations and non-physical (alchemical) thermodynamic cycles have shown great promise for structure-based drug design. However, their broad uptake and impact is held back by the notoriously complex setup of the calculations. Only a few tools other than the free energy perturbation approach by Schrodinger Inc. (referred to as FEP+) currently enable end-to-end application. Here, we present for the first time an approach based on the open-source software pmx that allows to easily set up and run alchemical calculations for diverse sets of small molecules using the GROMACS MD engine. The method relies on theoretically rigorous non-equilibrium thermodynamic integration (TI) foundations, and its flexibility allows calculations with multiple force fields. In this study, results from the Amber and Charmm force fields were combined to yield a consensus outcome performing on par with the commercial FEP+ approach. A large dataset of 482 perturbations from 13 different protein-ligand datasets led to an average unsigned error (AUE) of 3.64 +/- 0.14 kJ mol(-1), equivalent to Schrodinger's FEP+ AUE of 3.66 +/- 0.14 kJ mol(-1). For the first time, a setup is presented for overall high precision and high accuracy relative protein-ligand alchemical free energy calculations based on open-source software

    Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): comparative study of 13 amino acid descriptor sets

    Get PDF
    Background  While a large body of work exists on comparing and benchmarking of descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 different protein descriptor sets have been compared with respect to their behavior in perceiving similarities between amino acids. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI and BLOSUM, and a novel protein descriptor set termed ProtFP (4 variants). We investigate to which extent descriptor sets show collinear as well as orthogonal behavior via principal component analysis (PCA).    Results  In describing amino acid similarities, MSWHIM, T-scales and ST-scales show related behavior, as do the VHSE, FASGAI, and ProtFP (PCA3) descriptor sets. Conversely, the ProtFP (PCA5), ProtFP (PCA8), Z-Scales (Binned), and BLOSUM descriptor sets show behavior that is distinct from one another as well as both of the clusters above. Generally, the use of more principal components (>3 per amino acid, per descriptor) leads to a significant differences in the way amino acids are described, despite that the later principal components capture less variation per component of the original input data.    Conclusion  In this work a comparison is provided of how similar (and differently) currently available amino acids descriptor sets behave when converting structure to property space. The results obtained enable molecular modelers to select suitable amino acid descriptor sets for structure-activity analyses, e.g. those showing complementary behavior.Medicinal Chemistr

    Addendum to “on the measurability of a function which occurs in a paper by A. C. Zaanen”

    Get PDF
    Current guidelines discourage combined oral contraceptive (COC) use in women with hereditary thrombophilic defects. However, qualifying all hereditary thrombophilic defects as similarly strong risk factors might be questioned. Recent studies indicate the risk of venous thromboembolism (VTE) of a factor V Leiden mutation as considerably lower than a deficiency of protein C, protein S, or antithrombin. In a retrospective family cohort, the VTE risk during COC use and pregnancy (including postpartum) was assessed in 798 female relatives with or without a heterozygous, double heterozygous, or homozygous factor V Leiden or prothrombin G20210A mutation. Overall, absolute VTE risk in women with no, single, or combined defects was 0.13 (95% confidence interval 0.08-0.21), 0.35 (0.22-0.53), and 0.94 (0.47-1.67) per 100 person-years, while these were 0.19 (0.07-0.41), 0.49 (0.18-1.07), and 0.86 (0.10-3.11) during COC use, and 0.73 (0.30-1.51), 1.97 (0.94-3.63), and 7.65 (3.08-15.76) during pregnancy. COC use and pregnancy were independent risk factors for VTE, with highest risk during pregnancy postpartum, as demonstrated by adjusted hazard ratios of 16.0 (8.0-32.2) versus 2.2 (1.1-4.0) during COC use. Rather than strictly contraindicating COC use, we advocate that detailed counseling on all contraceptive options, including COCs, addressing the associated risks of both VTE and unintended pregnancy, enabling these women to make an informed choice. (Blood. 2011;118(8):2055-2061

    Identification of Allosteric Modulators of Metabotropic Glutamate 7 Receptor Using Proteochemometric Modeling

    Get PDF
    Proteochemometric modeling (PCM) is a computational approach that can be considered an extension of quantitative structure–activity relationship (QSAR) modeling, where a single model incorporates information for a family of targets and all the associated ligands instead of modeling activity versus one target. This is especially useful for situations where bioactivity data exists for similar proteins but is scarce for the protein of interest. Here we demonstrate the application of PCM to identify allosteric modulators of metabotropic glutamate (mGlu) receptors. Given our long-running interest in modulating mGlu receptor function we compiled a matrix of compound-target bioactivity data. Some members of the mGlu family are well explored both internally and in the public domain, while there are much fewer examples of ligands for other targets such as the mGlu7 receptor. Using a PCM approach mGlu7 receptor hits were found. In comparison to conventional single target modeling the identified hits were more diverse, had a better confirmation rate, and provide starting points for further exploration. We conclude that the robust structure–activity relationship from well explored target family members translated to better quality hits for PCM compared to virtual screening (VS) based on a single target.FWN – Publicaties zonder aanstelling Universiteit Leide

    Application of ESMACS binding free energy protocols to diverse datasets: Bromodomain-containing protein 4

    Get PDF
    As the application of computational methods in drug discovery pipelines becomes more widespread it is increasingly important to understand how reproducible their results are and how sensitive they are to choices made in simulation setup and analysis. Here we use ensemble simulation protocols, termed ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent), to investigate the sensitivity of the popular molecular mechanics Poisson-Boltzmann surface area (MMPBSA) methodology. Using the bromodomain-containing protein 4 (BRD4) system bound to a diverse set of ligands as our target, we show that robust rankings can be produced only through combining ensemble sampling with multiple trajectories and enhanced solvation via an explicit ligand hydration shell

    Advances and Challenges in Computational Target Prediction

    Get PDF
    Target deconvolution is a vital initial step in preclinical drug development to determine research focus and strategy. In this respect, computational target prediction is used to identify the most probable targets of an orphan ligand or the most similar targets to a protein under investigation. Applications range from the fundamental analysis of the mode-of-action over polypharmacology or adverse effect predictions to drug repositioning. Here, we provide a review on published ligand- and target-based as well as hybrid approaches for computational target prediction, together with current limitations and future directions.Medicinal Chemistr

    Leukocyte Bim deficiency does not impact atherogenesis in ldlr -/- mice, despite a pronounced induction of autoimmune inflammation

    Get PDF
    Proapoptotic Bcl-2 family member Bim is particularly relevant for deletion of autoreactive and activated T and B cells, implicating Bim in autoimmunity. As atherosclerosis is a chronic inflammatory process with features of autoimmune disease, we investigated the impact of hematopoietic Bim deficiency on plaque formation and parameters of plaque stability. Bim−/− or wild type bone marrow transplanted ldlr−/− mice were fed a Western type diet (WTD) for 5 or 10 weeks, after which they were immunophenotyped and atherosclerotic lesions were analyzed. Bim−/− transplanted mice displayed splenomegaly and overt lymphocytosis. CD4+ and CD8+ T cells were more activated (increased CD69 and CD71 expression, increased interferon gamma production). B cells were elevated by 147%, with a shift towards the pro-atherogenic IgG-producing B2 cell phenotype, resulting in a doubling of anti-oxLDL IgG1 antibody titers in serum of bim−/− mice. Bim−/− mice displayed massive intraplaque accumulation of Ig complexes and of lesional T cells, although this did not translate in changes in plaque size or stability features (apoptotic cell and macrophage content). The surprising lack in plaque phenotype despite the profound pro-atherogenic immune effects may be attributable to the sharp reduction of serum cholesterol levels in WTD fed bim−/− mice

    Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Get PDF
    Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event
    corecore